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1. Introduction

In order to understand quantum gravity, we need to know the structure of its Hilbert

space Htot and the quantum state |Ψ〉 which describes a given background. In this setup

one of the most basic quantities is considered to be the entanglement entropy. Let us

divide the total Hilbert space into a direct product of two subspaces Htot = HA ⊗ HB .

The entanglement entropy is defined as the von Neumann entropy when we trace out the

subspace HB . This measures the information loss accompanied with this smearing process.

The entropy depends only on the total density matrix ρtot = |Ψ〉〈Ψ| and the structure

of the Hilbert space. Therefore it is a universal and basic quantity to characterize the

quantum state as we do not have to make explicit the details of the theory such as matter

contents and so on.

The modern understanding of holography, especially in the AdS/CFT correspon-

dence [1] , tells us that the Hilbert space Htot of the gravity theory is actually equivalent

to the Hilbert space of a certain quantum field theory (QFT) that lives on the boundary of
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the spacetime. In AdS/CFT, the QFT becomes a conformal field theory (CFT) and this

is the setup we consider in this paper mainly.

In QFTs, we have two Hilbert subspaces by dividing the total space manifold into two

submanifolds A and B. The entanglement entropy is defined geometrically by tracing out

the states which live on the submanifold A [2]. The holography argues that the Hilbert

space of its dual gravity theory can also be written as a direct product as is necessary

to define the entanglement entropy. Moreover, we expect that the entanglement entropy

computed in the dual field theory should be the same as the one in the gravity theory.

Recently, a holographic computation of the entanglement entropy is proposed in [3, 4],

based on the AdS/CFT correspondence [1]. There, the entropy is calculated by replacing

the horizon area in the Bekenstein-Hawking formula with the area of minimal surface in

AdS space whose boundary is the same as that of the submanifold A. This offers us a

powerful way to calculate the entanglement entropy; otherwise it involves the complicated

quantum analysis, which is very hard except two dimensional CFTs [5]. This relation has

been successfully applied to black holes in brane-world [6, 7] and de-Sitter spaces [8] (refer

to [9] and [10] for earlier discussions). A slightly heuristic proof of this proposal has been

given in [11] based on the first principle of AdS/CFT correspondence [12]. Moreover, as we

will point out in this paper, the above holographic computation of entanglement entropy

is closely related to the covariant entropy bound known as the Bousso bound [13]. We will

argue that the holographic computation saturates this bound. This consideration makes

clear the following basic question in AdS/CFT correspondence: what part of the AdS space

encodes the information of the boundary CFT included in a specific region?

In this paper we would like to explore this proposal and to find further evidences

from a different viewpoint. One of the most important properties which are satisfied by

the entanglement entropy is called the strong subadditivity [14]. This represents a sort of

irreversibility of entropy and is considered to be the strongest condition of entanglement

entropy. Indeed, it has rigorously been shown that the strong subadditivity with several

other more obvious conditions characterizes the von-Neumann entropy. Moreover, it is

known that the entropic analogue of Zamolodchikov’s c−theorem can be derived from the

strong subadditivity in 2D QFTs [15, 16].

The main purpose of this paper is to check if this condition is satisfied in the holographic

calculations in several explicit examples. In particular we consider the case where the

submanifold A is given by an annulus, and also the case where its boundary ∂A is a line with

a cusp singularity. The latter examples in the (2+1) D free scalar field theory were discussed

in [17] quite recently (refer to [18] for a general discussion and also to [19] for an analysis

at quantum critical point with a conformal invariant ground state wavefunction). Our

analysis corresponds to the result in the strongly coupled supersymmetric gauge theories

of the same dimension. The strong subadditivity requires that a specific term in the entropy

should be a concave function1 when we change the value of the geometrical quantity such

as the ratio of the radius in the annulus and the deficit angle of a cusp. Indeed, in all our

1As usual, we call a function f is concave (or convex) if f ′′ ≤ 0 (or f ′′ ≥ 0). Even though the specific

terms in the entropy itself are concave, we will also encounter convex functions because we sometimes flip

the sign of the terms.
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examples we will find that the strong subadditivity is satisfied. This provides an additional

evidence of the proposed holographic derivation of the entanglement entropy. We can also

regard it as an evidence of the AdS/CFT correspondence itself.

At the same time, as a bonus, we will notice the similarity between the holographic

calculation of the entanglement entropy [3] and the well-known evaluation of the Wilson

loops expectation values in AdS/CFT [20]. In particular, we can easily find that the

entanglement entropy in a (2 + 1) dimensional CFT is equivalent to the Wilson loop in a

(3 + 1) dimensional CFT defined by a strongly coupled gauge theory. Thus we conjecture

that the strong subadditivity relation is also true for strongly coupled gauge theories.

This paper is organized as follows. In section two, we review the basic definition and

properties of the entanglement entropy such as the strong subadditivity. In section three,

we apply the strong subadditivity to various examples of the entanglement entropy in CFTs.

In section four, we explain the holographic computation of the entanglement entropy via

the AdS/CFT. We also relate it to the covariant entropy bound (so called the Bousso

bound). In section five, we examine specific examples of the holographic entanglement

entropy and check if it satisfies the strong subadditivity. In section six, we summarize

conclusions.

2. Entanglement entropy and strong subadditivity

2.1 Definition of entanglement entropy

Consider a quantum mechanical system with many degrees of freedom such as spin chains.

More generally, we can consider arbitrary lattice models or quantum field theories2 (QFTs)

including conformal field theories (CFTs). We put the system at zero temperature and the

total quantum system is described by the pure ground state |Ψ〉. We assume no degeneracy

of the ground state. Then, the density matrix is that of the pure state

ρtot = |Ψ〉〈Ψ|. (2.1)

The von Neumann entropy of the total system is clearly zero Stot = − tr ρtot log ρtot = 0.

Next we divide the total system into two subsystems A and B. In the spin chain

example, we artificially cut off the chain at some point and divide the lattice points into

two groups. Notice that physically we do not do anything to the system and the cutting

procedure is an imaginary process. Accordingly the total Hilbert space can be written as

a direct product of two spaces Htot = HA ⊗ HB corresponding to those of subsystems A

and B. Let OA be an operator which acts non-trivially only on A. Then its expectation

value is

〈OA〉 = trOA · ρtot = trA OA · ρA, (2.2)

2The entanglement entropy is generally divergent in continuum theories. Therefore usually we assume

an ultraviolet cutoff a to regulate the quantum field theory. In this sense, strictly speaking, the entropy

should always be defined in the regularized lattice version of a given quantum field theories. Below we

assume that this is just a technical issue and that we can always have such a regularization.
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where the trace trA is taken only over the Hilbert space HA. Here we defined the reduced

density matrix ρA defined by

ρA = trB ρtot, (2.3)

by tracing out the Hilbert space HB. Thus the observer who is only accessible to the

subsystem A feels as if the total system were described by the reduced density matrix ρA.

Then we define the entanglement entropy of the subsystem A as the von Neumann

entropy of the reduced density matrix ρA

SA = − trA ρA log ρA. (2.4)

This entropy measures the amount of information lost by tracing out (or smearing) the

subsystem B.

It is also possible to define the entanglement entropy SA(β) at finite temperature

T = β−1. This can be done just by replacing (2.1) with the thermal one ρthermal = e−βH ,

where H is the total Hamiltonian. When A is the total system, SA(β) is clearly the same

as the thermal entropy.

2.2 Strong subadditivity

The entanglement entropy enjoys several useful properties. When the system is at zero

temperature (i.e. pure state), it is easy to show

SA = SB, (2.5)

which manifestly shows that the entropy is not extensive as opposed to the ordinary thermal

entropy. This equality (2.5) is violated for a mixed state (e.g. finite temperature).

Below we assume that the state is not pure in general. When we start with two

subsystems A and A′, we can show

SA + SA′ ≥ SA∪A′ . (2.6)

This is called subadditivity. We find this relation intuitively clear since the information for

the overlapped part A ∩ A′ is double counted in the left-hand side of (2.6). It is true even

when A ∩ A′ is empty.

Actually, a stronger inequality is known to be satisfied (again we assume the mixed

state generally). This is called the strong subadditivity [14] given by the following formula

SA + SA′ ≥ SA∪A′ + SA∩A′ . (2.7)

Equally we can write this inequality as follows. Divide the subsystem A into three parts

A1, A2 and A3 such that each of them does not intersect with each other, i.e.

HA = HA1 ⊗HA2 ⊗HA3, (2.8)

then we can show

SA1+A2+A3 + SA2 ≤ SA1+A2 + SA2+A3 . (2.9)
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Notice that if there is no correlation between the three Hilbert spaces (i.e. ρtot = ρA1 ⊗
ρA2 ⊗ ρA3), the both sides in (2.9) become equal.

By multiplying an extra Hilbert space A4 with A1, A2 and A3 such that the system is

pure with respect to the total Hilbert space HAtot = HA1 ⊗HA2 ⊗HA3 ⊗HA4, we can find

another inequality equivalent to (2.9)

SA1 + SA3 ≤ SA1+A2 + SA2+A3. (2.10)

It is easy to see that the subadditivity (2.6) and the triangle inequality (Araki-Lieb in-

equality) [21]

|SA1 − SA2 | ≤ SA1+A2 , (2.11)

can be derived from (i.e. weaker than) (2.9) and (2.10).

The strong subadditivity (2.7), (2.9) and (2.10) is also satisfied for the classical entropy

known as the Shannon entropy and in this case the proof is almost the same as the proof

of the classical version of the subadditivity (2.6). However, the proof of the strong sub-

additivity for the quantum entropy (von Neumann entropy) is rather complicated. Indeed

the original proof given by Lieb and Ruskai [14] is highly non-trivial.

To see an outlook of the proof for the strong subadditivity we begin with a definition

of jointly concavity (we will follow the proof in [22]). Suppose f(A,B) is a real-valued

function of two matrices A and B. The function f is said to be jointly concave in A and

B if

f(λA1 + (1 − λ)A2, λB1 + (1 − λ)B2) ≥ λf(A1, B1) + (1 − λ)f(A2, B2), (2.12)

for all 0 ≤ λ ≤ 1.

To prove the strong subadditivity, we firstly use the Lieb’s theorem. Lieb’s theorem

states

f(A,B) ≡ tr(X†AtXB1−t) (2.13)

is jointly concave for any matrix X and for all 0 ≤ t ≤ 1 in positive matrices A and B.

Then Lieb’s theorem implies the joint convexity of the relative entropy

S(ρ||σ) ≡ tr(ρ log ρ) − tr(ρ log σ). (2.14)

in σ and ρ, and the joint convexity of the relative entropy shows that the conditional

entropy

S(A|B) ≡ SA+B − SB (2.15)

is concave in ρA+B. Finally, strong subadditivity (2.7), (2.9) and (2.10) follows from the

concavity of the conditional entropy. More details of the proof and other properties of the

entanglement entropy can be found in e.g. [22].

As is clear from the above proof, the strong subadditivity has a deep relationship with

the concavity of entropy. It will become clear later that the strong subadditivity tells

us the entropy is concave when we change the values of parameters that determine the

subsystems. It is the strongest condition ever found for the von-Neumann entropy. Indeed,

it has mathematically been shown that the strong subadditivity with several other more

obvious conditions (such as the invariance under unitary transformations and the continuity

with respect to the eigenvalues of ρtot) characterizes the von-Neumann entropy [23].
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B

B
′

D
+(B)

H
+(B)

Figure 1: The subspaces B and B′ of the Cauchy surfaces define the same Hilbert space HB′ = HB.

This consideration leads to the conclusion that the Hilbert space is classified by the Cauchy horizon

H+(B).

2.3 Entanglement entropy in relativistic theories

As we have explained, the entanglement entropy is defined by dividing the Hilbert space into

two subspaces. In a (d+1) dimensional quantum field theory, this can be done geometrically

by specifying a d dimensional submanifold B embedded in the total d dimensional space.

Thus below we use the same symbols A,B, . . . to specify both the subsystem and the

submanifold at the same time. We assume that the spacetime is simply given by the flat

space R1,d just for simplicity.

In the relativistic theory we have to take care of the Lorentz invariance. We can take

the space-like surface at fixed time t = t0 as a Cauchy surface and divide it into A and B.

This manifestly divides the total Hilbert space Htot into two subspaces HA and HB such

that H = HA⊗HB. The entanglement entropy SA is define by taking the trace over states

living on the submanifold B.

However, we can take other Cauchy surfaces to realize the same partition of the Hilbert

space. Consider the surface B′ instead of B in figure 1. This leads to the same Hilbert

subspace i.e. HB′ = HB because the physics on B′ is completely determined if we fix

the initial condition on B. The information on B determines D+(B), which is called the

future domain of dependence. The boundary of D+(B) is the (future) Cauchy horizon

H+(B). Therefore, the Hilbert subspace HB is specified if we choose the Cauchy horizon

H+(B) [16].
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3. Applications of strong subadditivity

Here we would like to apply the strong subadditivity relation (2.7) and (2.9) to the entan-

glement entropy SA in conformal field theories in order to find constraints on the properties

of SA. Especially we are interested in (2 + 1) and (3 + 1) dimensional CFTs, though it is

not difficult to extend our argument to higher dimensional theories.

3.1 Entanglement entropy in the presence of cusp

Consider the entanglement entropy for a (2 + 1) dimensional CFT. We assume that the

spacetime is simply given by R1,2. The subsystem A (at a fixed time t = 0) is geometrically

described by a submanifold A in the two dimensional space-like manifold R2. When the

boundary ∂A is smooth (e.g. the case where ∂A is a circle), we find the following behavior

of the entropy

SA = γ · |∂A|
a

+ b, (3.1)

where a is the UV cutoff (lattice spacing), and |∂A| denotes the length of the boundary of

A. Also γ is a numerical constant. In general the leading divergent term is proportional to

the area of the boundary ∂A, which is known as the area law [2]. The first term in (3.1)

corresponds to this contribution. The constant b does not depend on the cutoff a and

thus can be considered as a universal quantity. It depends on the explicit form of ∂A in a

conformal invariant way.

On the other hand, if the boundary ∂A is singular and has a cusp, there exists a

logarithmic correction as found quite recently in various systems [17, 19]. The cusp is

specified by an angle defined such that Ω = π corresponds to a smooth line (see figure 2).

Therefore in this case the entropy takes the form

SA = γ · |∂A|
a

+ f(Ω) log a + b. (3.2)

Notice that the constant term b depends on the cutoff a in this case.

Now we would like to derive constraints on f(Ω) from the basic properties of entan-

glement entropy. First of all, by definition we find

f(π) = 0. (3.3)

Also the equality SA = SB (2.1) leads to

f(Ω) = f(2π − Ω). (3.4)

Next we would like to apply the strong subadditivity. Assume that the submanifolds

A1, A2 and A3 each have cusps with the angles α1, α2 and α3 such that one side of the cusp

of A1 (or A2) is glued with that of A2 (or A3), respectively (thus we require
∑

i αi < 2π)

as in figure 2. Then the strong subadditivity leads to (note that leading divergences are

all canceled out and that we finally take the limit a → 0)

f(α1 + α2 + α3) − f(α1 + α2) ≥ f(α2 + α3) − f(α2). (3.5)
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A

Ω

B

A1

A2

A3

α1

α2

α3

Figure 2: The boundary with a cups (left). The setup to which the strong subadditivity is applied

(right).

By taking the limit α3 → +0 we obtain

f ′(α1 + α2) ≥ f ′(α2). (3.6)

Finally the limit α1 → +0 leads to

f ′′(Ω) ≥ 0. (3.7)

Thus f(Ω) is a convex function.3 Furthermore, the opposite is true, i.e. if f is convex,

then (3.5) does hold.

It is also possible to combine the relation (3.4) with the strong subadditivity. Especially

we take α1 = 2π − 2α2. Then (3.5) can be reduced to f(α2 − α3) ≥ f(α2 + α3). Thus we

find

f ′(Ω) ≤ 0 (if Ω ≤ π). (3.8)

This leads to f(Ω) ≥ 0 due to (3.3).

In conclusion, our results (3.3), (3.7) and (3.8) can be summarized as follows

f(Ω) ≥ 0, f(π) = 0, f ′(Ω) ≤ 0, f ′′(Ω) ≥ 0, (0 ≤ Ω ≤ π). (3.9)

For the values π ≤ Ω ≤ 2π we can use the identity f(Ω) = f(2π − Ω).

3.2 Entanglement entropy for annular subsystem

Next we turn to the case where the submanifold A is an annulus such that its boundary

∂A consists of two concentric rings with the radius r1 and r2 (assume r1 < r2) as in figure

3. We define its entanglement entropy by SA(r1, r2). As is clear from the discussions in

the previous subsection, it takes the following general form

SA(r1, r2) = γ · 2π(r1 + r2)

a
+ b

(

r2

r1

)

. (3.10)

3Even though the entropy is concave, the function f is convex since the pre-factor log a is negative.
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A

r2
r1

A3

A2

A1

r1

r2

r3

r4

Figure 3: The annulus boundary (left). The setup to which the strong subadditivity is applied

(right).

Notice that the universal finite term b is a function of r2/r1 since it is dimensionless. There

is no logarithmic term as opposed to the previous example because the boundary does not

include any cusp singularity.

Now we would like to apply the strong subadditivity. Suppose three annular subman-

ifolds A1, A2 and A3 are placed successively such that the radii of their concentric rings

are (r1, r2), (r2, r3) and (r3, r4), respectively (r1 < r2 < r3 < r4) as in figure 3.

It is also useful to define ρi = log ri. Then it is straightforward to write down the

inequality obtained from the strong subadditivity

b(ρ4 − ρ1) + b(ρ3 − ρ2) ≤ b(ρ3 − ρ1) + b(ρ4 − ρ2). (3.11)

As a particular limit ρ4 = ∞ we find b(ρ3 − ρ2) ≤ b(ρ3 − ρ1). Thus we find

b′(ρ) ≥ 0. (3.12)

Also by taking the limits ρ4 → ρ3 and ρ2 → ρ1, we find

b′′(ρ) ≤ 0. (3.13)

Furthermore, the limit ρ → ∞ is equivalent to the case where A is a circular disk since the

radius r of the inner hole goes to zero. We write its value of b as bdisk. In summary we

have found the following properties of the function b(ρ) (ρ = log r′

r > 0)

b(ρ) ≤ b(∞) = bdisk, b′(ρ) ≥ 0, b′′(ρ) ≤ 0. (3.14)

It is also intriguing to examine higher dimensional cases. The analogous boundary ∂A

can be obtained by replacing the two concentric rings with two such d − 1 dimensional

spheres. In particular, we concentrate on the most interesting case i.e. d = 3 (4D CFT).

The corresponding entanglement entropy takes the following form

SA = γ · r2
1 + r2

2

a2
− f · log

(r1r2

a2

)

+ b

(

r2

r1

)

. (3.15)

– 9 –



J
H
E
P
0
2
(
2
0
0
7
)
0
4
2

The coefficient f in front of the logarithmic term is universal and it is proportional to a

linear combination of central charges in the 4D CFT [4] (see also [24] for earlier discussions).

The general formula derived in [4] and the dual holographic computation via AdS/CFT

discussed later show that f = f(r2/r1) does not actually depend on r1/r2, i.e. just a

constant. This is also clear from the observation that this term should be a local quantity

since it originally depends on the cutoff a and is divergent. Even though the function b

depends on the choice of the cutoff a, we can apply the strong subadditivity as before and

obtain the properties (3.14) with b(∞) = bdisk now replaced by b(∞) = bsphere. This is

because both quadratic and logarithmic divergent term depend on the radii r1 and r2 only

in the form g(r1)+ g(r2) and thus they are completely canceled out in the inequality of the

strong subadditivity.

3.3 Entanglement entropy for straight belt

Before we move on to the holographic dual description, we would like to mention the

simplest example of entanglement entropy. This is the case where the submanifold A is

given by the d dimensional straight belt AS (refer also to [3, 4]). It has the width l in one

direction and extends in other d − 1 directions infinitely (its regularized length is denoted

by L). In general, the entanglement entropy SA in d + 1 ≥ 3 dimensional CFT takes the

following form

SA = γ · Ld−1

ad−1
− β · Ld−1

ld−1
, (3.16)

where γ and β are positive constants. This form (3.16) has been obtained from the explicit

computation in free field theories [25] and holographic results [3, 4]. The d = 1 case is

special and the entropy is known to be expressed as [5]

SA =
c

3
log(l/a), (3.17)

where c is the central charge.

Following discussions similar to the ones in the previous subsections, we can find

that the strong subadditivity requires that the finite term Sfinite(l) of the entropy satisfies
d2

dl2 Sfinite ≤ 0. Indeed, this is clearly true for (3.16) and (3.17).

Moreover, we can obtain a stronger condition4 from a relativistic consideration of the

strong subadditivity as discovered in [16]. This requires

d

dl

(

l
d

dl
Sfinite

)

≤ 0. (3.18)

Again this is satisfied by (3.16) and (3.17). In two dimensional CFTs, (3.18) leads to the

entropic c-theorem [15]. Define the entropic c-function C by

l
dSA

dl
= C(l), (3.19)

4The derivation of this stronger condition relies heavily on the simple structure of the submanifold A

and cannot be directly applied to other examples discussed in section 3.1 and 3.2.
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in non-conformal field theories. C(l) approaches c/3 at a fixed point. Then (3.18) is

equivalent to the c-theorem C ′(l) ≤ 0 [15], regarding naturally l as the length scale. It

will be a very exciting future problem to extend this entropic proof of c-theorem to higher

dimensions, though it does not seem to be straightforward.

4. Holographic entanglement entropy and Bousso bound

4.1 Holographic entanglement entropy

The holographic principle tells us that the true degree of freedom in a d + 2 dimensional

gravity theory is actually d + 1 dimensional [26]. This idea is manifestly realized in string

theory as the AdS/CFT correspondence [1]. In principle, we believe that we can compute

any physical quantities in a d + 1 dimensional CFT from the dual d + 2 dimensional anti

de-Sitter space (AdSd+2). Thus one direct way to obtain a gravitational interpretation of

the entanglement entropy in a CFT is to apply the AdS/CFT correspondence.

In [3, 4], it is claimed that the entanglement entropy can be computed as follows

SA =
A(γA)

4G
(d+2)
N

, (4.1)

where A(Σ) denotes the area of the surface Σ, and G
(d+2)
N is the Newton constant in

the d+2 dimensional anti de-Sitter space. The d dimensional surface γA is determined such

that the minimal area surface whose boundary coincides with the boundary of submanifold

A.

Intuitively, (4.1) can be understood by applying the Bekenstein-Hawking entropy for-

mula to the surface γA as if it is an event horizon as we expect that γA represents the

lost information hidden inside the region B in gravity description. As checked in [3], the

formula (4.1) is exactly true in d = 1 examples. We can also find partial quantitative

evidences in higher dimensional cases [4].

Moreover, as shown in [11] recently, we can derive (4.1) from the basic principle of

AdS/CFT correspondence [12]. Its outline can be summarized very briefly as follows.

Consider the partition function ZCFT of a CFT in the presence of the negative deficit angle

2π − δ < 0. It is the same as the trace trA ρn
A by setting n = δ

2π . The locus of the deficit

angle is localized on a codimension two surface which is identified with the boundary ∂A.

Then the entanglement entropy in the CFT is equal to the derivative of partition function

with respect to the deficit angle (refer to e.g. [4])

SA = − ∂

∂n
log trA ρn

A|n=1 = −2π
∂

∂δ
log ZCFT|δ=2π . (4.2)

On the other hand, the partition function in CFTd+1 can be obtained as that of

the supergravity on the AdSd+2 space [12] via the AdS/CFT. At the tree level in the

supergravity we thus find ZCFT = e−Ssugra , where Ssugra is the tree level supergravity action.

The deficit angle at the boundary z = a is extended into the bulk of the AdS space and will

form a d dimensional surface γA. Then the Einstein-Hilbert term 1

16πG
(d+2)
N

∫

dxd+2
√

GR
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is evaluated as A(γA)

8πG
(d+2)
N

(δ − 2π) since the scalar curvature behaves as a delta function

localized at the surface ∂A. Finally, we apply the ordinary variational principle we find

that the surface γA should be the minimal surface and it gives the largest contribution to

the path-integral of the gravity partition function. In this way we recover (4.1) using (4.2).

4.2 Relation to the Bousso bound

To apply the Bekenstein-Hawking formula to a surface which is actually not an event

horizon, looks similar to the idea of the entropy bound [26, 13]. Motivated by this, in

this subsection we would like to discuss the relation between entanglement entropy and

covariant entropy bound, which is known as the Bousso bound [13].

The Bousso bound is the following claim. Consider a space-like codimension two

manifold Σ with the area A(Σ). Its light-sheet L(Σ) is defined to be a codimension one

hypersurface bounded by Σ and generated by one of the four null congruence orthogonal

to Σ. We choose the light-sheet such that the expansion of light rays is always negative.

Let SL(Σ) be the entropy on the light-sheet. Then the Bousso bound argues

SL(Σ) ≤
A(Σ)

4GN
. (4.3)

We would like to apply this bound to the spacetime AdSd+2.

Now we go back to the entanglement entropy in CFTs. Physically the entanglement

entropy SA measures the loss of information when we smear out the region B. As we have

explained, SA is specified by the Cauchy horizon H+(B). Thus its bulk description should

be such that the light-sheet, where the amount of information (or entropy) is measured,

ends on H+(B) at the boundary. Since L(Σ) is defined such that L(Σ) ⊥ Σ, the spacelike

manifold Σ is orthogonal to the boundary when they meet. This is always satisfied if we

choose Σ the minimal surface γA. Notice that, however, we can choose other surface with

this property. In this way we find the setup in figure 4.

Now we apply the Bousso bound to this system. The entropy on the light-sheet is

bounded by the area of Σ. If Σ is chosen to be the minimal surface γA, we find SL(γA) ≤
A(γA)
4GN

from (4.3). Following the general idea of holography we would like to claim that

the entanglement entropy is the same as the entropy on the light-sheet L(γA). Then the

relation (4.1) claims that the entanglement entropy SA saturates the Bousso bound (4.3)

SA = SL(γA) =
A(γA)

4GN
. (4.4)

All of these claims can be shown to be exactly true in the AdS3/CFT2 case as the en-

tanglement entropies in 2D CFTs are analytically computable [3]. Also notice that even

if we do not choose γA as Σ, the previous condition that Σ should be orthogonal to the

boundary is enough to prove that the leading divergent term in A(Σ)
4GN

is the same as the

leading (area law) term5 in the holographic entanglement entropy (4.1).

5It is clear that these arguments also hold for asymptotically AdS spaces. The dual theories are quantum

field theories with UV fixed points. One of the examples which do not satisfy this criterion is the 4D
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Boundary of AdS

z = a → 0
∞

t

x B

Light-sheet L

H+
H+

Σ = γA

Figure 4: Relation to Bousso bound. We write the light-sheet in the Poincare coordinate ds2 =

z−2(−dt2 + dx2 + dz2) of AdS3. Notice the form of light-cone is the same as that in the flat

spacetime. The light-sheet is given by a half cone L and the minimal surface γA is a half circle.

We also need to explain why the bound is saturated. One explanation is clearly to

remember the proof found in [11] and to directly compute the entropy following the basic

principle of AdS/CFT [12]. Even if we do not apply the AdS/CFT, we can at least tell that

this is strongly suggested. This is because we are choosing the minimal surfaces among

other candidates of Σ. If we employ any one of the others, we will have a weaker bound

since A(γA) < A(Σ) for all Σs other than γA. Thus the minimal surface offers the strictest

bound in (4.3) and thus there is an opportunity to saturate the bound.

These arguments clarifies the following important question. In which region of the

AdS space is encoded the information in the dual CFT? Our example depicted in figure

4 manifestly shows that the information in the B region, which is equal to the one in its

causal development D+(B), is dual to the inside of the light-sheet L.

5. Holographic evidences for strong subadditivity

In this section we would like to discuss the main issue of this paper. This is to examine

if the strong subadditivity is satisfied in the holographic dual computations. For this

purpose, we will study several particular examples of entanglement entropy in 2 + 1 and

cascading theory [27]. In this model, The radius of the five dimensional Einstein manifold R depends on

the energy scale or equally the radial coordinate r as R ∼ (log r)
1
4 in the UV region. This corresponds

to the fact that the rank of gauge groups increases at higher energy in the cascading gauge theory. The

calculation of minimal surface areas can be done as before and in the end we find that the leading divergence

is proportional to − |∂A|

a2 · (log a)2. Thus in this case, the well-known area law of the leading divergence

∼ |∂A|

ad−1 (see also (3.16)) is modified by the logarithmic factor.
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3 + 1 dimensional CFTs. In the dual AdSd+2 spacetime, we always employ the Poincare

coordinate

ds2 = R2 dz2 − dx2
0 +

∑d
i=1 dx2

i

z2
. (5.1)

The radial coordinate z represents the length scale and we put the UV cutoff at z = a.

To compute the entanglement entropy, we choose a particular time slice e.g. x0 = 0 and then

try to find the minimal surface γA. We require that the boundary of γA at z = a coincides

with the boundary of the submanifold A (or equally its complement B) which defines the

entanglement entropy SA as explained in section 4. Finally we apply the formula (4.1) to

obtain the entropy SA. Notice that this is generally divergent in the limit a → 0 and the

leading divergence takes the form ∼ |∂A|
ad−1 , which agrees with the known area law of the

entanglement entropy.

The results found for (2 + 1) dimensional CFTs via holographic computations can

be equally applied to the calculation of Wilson loops in (3 + 1) dimensional CFTs which

are defined by strongly coupled gauge theories. Therefore we can claim that the strong

subadditivity relation is also true for the Wilson loop correlation functions. This issue will

be discussed briefly in the section 6.

5.1 Cusp case

First we would like to discuss the d = 2 example (i.e. (2+1) dim. CFT) where the subsystem

A has a cusp singularity. This is the same setup as the one discussed in section 3.1. The

boundary ∂A is a line with a cusp at a point as in figure 2. Its angle is defined to be Ω. In

the polar coordinate (r, φ) of the (x1, x2)-plane, it is just described by

{(r, φ)|0 ≤ r < ∞, φ = 0} ∪ {(r, φ)|0 ≤ r < ∞, φ = Ω}. (5.2)

Next we would like to find the corresponding minimal surface γA in AdSd+2. Fortunately,

this setup is essentially the same as that appears in the Wilson loop calculation [20] done

in [28] and thus we can employ the results there.

Using the conformal symmetry z → λz, xµ → λxµ, we can assume that the surface γA

is described [28] by

z(r, φ) =
r

g(φ)
. (5.3)

The area of γA is given by

|γA| = R2

∫

dr

r

∫

dφ
√

(g′)2 + g2 + g4. (5.4)

Thinking φ as a time, we find the Hamiltonian

H =
∂L

∂g′
g′ − L = − g2 + g4

√

(g′)2 + g2 + g4
= const.(≡ −g2

0 − g4
0). (5.5)

Then we can reduce the minimal surface equation to the following differential equation

dg

dφ
= g

√

(1 + g2)

(

g2 + g4

g2
0 + g4

0

− 1

)

. (5.6)
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Since g = g0 is the turning point, we have to require

Ω

2
=

∫ ∞

g0

dg

g

√

(1 + g2)
(

g2+g4

g2
0+g4

0
− 1

)

(5.7)

= g0

√

1 + g2
0

∫ ∞

0

dz

(z2 + g2
0)

√

(z2 + g2
0 + 1)(z2 + 2g2

0 + 1)
,

where we set g2 = z2 + g2
0 . In the end the minimal area can be found as

|γA| = 2R2

∫ ∞

g0a

dr

r

∫ r/a

g0

dg
g
√

1 + g2

√

(g2 − g2
0)(g

2 + g2
0 + 1)

(5.8)

= 2R2

∫ ∞

g0a

dr

r

∫ r/a

0
dz

√

z2 + g2
0 + 1

z2 + 2g2
0 + 1

,

where we noticed that the upper bound of the g integral is r/a from (5.3). The integration

of g diverges as r
a − f(Ω) when the cutoff a is set to zero. The finite part is explicitly given

by

f(Ω) =

∫ ∞

0
dz

[

1 −
√

z2 + g2
0 + 1

z2 + 2g2
0 + 1

]

, (5.9)

where the relation between Ω and g0 is determined from (5.8). Then the total area can be

found as (the upper bound of r is defined to be L for a regularization)

|γA|
R2

=
2L

a
− 2f(Ω) log

L

a
+ (finite terms). (5.10)

Thus the entanglement entropy is now computed as (we omit finite constant terms)

SA =
R2

4G
(4)
N

(

2L

a
− 2f(Ω) log

L

a

)

. (5.11)

Note that the function f(Ω) is the same as the one in (3.2) up to the factor R2

2G
(4)
N

.

The strong subadditivity tells us that the function f(Ω) is a convex function as we

have seen in section 3.1. Indeed we can check this property from the explicit form of f(Ω)

shown in figure 5.

It is also possible to find the following analytic form of f(Ω) when Ω is very small

f(Ω) ' Γ
(

3
4

)4

π
· 1

Ω
. (5.12)

This behavior f(Ω) ∝ Ω−1 for a small angle is the same as the one computed in the free

scalar field theory6 [17].

6In the free field theory, the coefficient β in front of Ω−1 in the logarithmic term of SA (β = R2

2G
(4)
N

· Γ( 3
4 )4

π

in our case of (5.12)) is equal to 1
π

R ∞

0
dtc(t), where c(t) is the entropic c-function [17]. Also in the same

paper [17] it is argued and confirmed in the free field theoretic computations that this quantity β is equal

to the coefficient β of the entropy in the straight line case (see (3.16)). We can check that this relation is

indeed true in our case exactly. We are very grateful to H. Casini for explaining this relation to us.
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Figure 5: The function f(Ω) in (2+ 1)D CFT; the horizontal and vertical coordinate are given by

Ω/π and f(Ω), respectively. f(Ω) becomes vanishing at Ω = π.

Before we jump to the next example, it may be helpful to apply our formula (5.11)

to a specific background. Consider the AdS4 × S7 realized as the near horizon limit of N

M2-branes in M-theory . The corresponding CFT is defined by the strong coupling limit of

the (2+1) dimensional maximally supersymmetric gauge theory. The entropy is explicitly

given by

SA =
N

3
2

3
√

2

(

2L

a
− 2f(Ω) log

L

a

)

. (5.13)

5.2 Annulus case

Next we examine the case where the subsystem A is given by the annulus whose boundary

∂A consists of two concentric rings with the radius r1 and r2 (assume r1 < r2). We again

use the polar coordinate for the (x1, x2)-plane. We can also consider higher dimensional

cases where the concentric rings are replaced by concentric d − 1 dimensional spheres.

These are the same setups as the ones discussed in section 3.2. Below we will mainly be

interested in the d = 2 and d = 3 case (i.e. (2+1) and (3+1) dimensional CFTs).

The minimal surface is the d dimensional ‘half torus’ defined by the half circle z = z(r)

times the sphere Sd−1 s.t. z(r1) = z(r2) = a → 0. The function z(r) is found by minimizing

the area functional

|γA| = Rd · Vol(Sd−1) ·
∫ r2

r1

drrd−1

√

1 + (dz
dr )2

zd
. (5.14)

We can find the following equation of motion

rzz′′ + (d − 1)z(z′)3 + (d − 1)zz′ + dr(z′)2 + dr = 0. (5.15)
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Its simplest solution is the d dimensional sphere z2+r2 =const. Clearly we have to deal with

more complicated solutions to find the desired configurations. Thus one way to analyze

this problem is to directly resort a numerical analysis as explained below.

First let us concentrate on the d = 2 case. The numerical investigation shows that

there is an upper limit on the allowed value of r2/r1. This means that if r2/r1 is large

enough, then there is no solution to (5.14). In this case the minimal area surface should be

regarded as the two disconnected spheres with the radii r1 and r2. This critical value can

be estimated as (r2/r1)∗ ' 2.725. This kind of phase transition has already been known

in the context of Wilson loop computations and is called Gross-Ooguri transition [29 –

31]. We solved (5.15) numerically and calculated the finite part of the integral (setting

ρ = log(r2/r1))

b̃(ρ) =





∫ r2

r1

drr

√

1 + (dz
dr )2

z2



 − r1 + r2

a
. (5.16)

The result is plotted in figure 6. The total entanglement entropy is expressed as

SA =
|γA|
4G

(4)
N

=
2πR2

4G
(4)
N

(

r1 + r2

a
+ b̃(ρ)

)

. (5.17)

The entanglement entropy7 in the specific example of AdS4×S7 is obtained by substituting
R2

4G
(4)
N

= N
3
2

3
√

2
.

Now we can see that there are two branches of solutions when r2/r1 < (r2/r1)∗ as we

showed in figure 6. One of them is uninteresting since its area is larger than the trivial one

(i.e. two disconnected spheres b̃sphere = −2). The second one is physically relevant as long

as b̃ < −2 (i.e.ρ < 0.88). Above that point, the trivial one becomes more stable and thus

we have b̃(ρ) = −2.

In summary, the physically relevant minimal surface is found as follows. When b̃ <

b̃sphere, it is given by one of the two non-trivial connected solutions to (5.15) with the

smaller area. At b̃ = b̃sphere, a transition takes place. Then it becomes the disconnected

sphere solution when b̃ > b̃sphere. Therefore we can check from figure 6 that the finite part

b(ρ) = 2πR2

4G
(4)
N

b̃(ρ) of the entanglement entropy is a concave function of ρ (i.e. b′′ ≤ 0) and

this agrees with the strong subadditivity discussed in section 3.2. It may also be intriguing

to note that the first irrelevant solution does not satisfy the concave condition. For that

solution, the value of b̃ approaches b̃sphere = −2 in the ρ → 0 limit.

Now we turn to the d = 3 case. The entropy takes the following form

SA =

(

R3

4G
(5)
N

)

· 4π
[

r2 + r′2

2a2
− 1

2
log

(

rr′

a2

)

+ b̃3

(

r′

r

)]

. (5.18)

In the specific case of AdS5 × S5 dual to the N = 4 SU(N) super Yang-Mills, the

entropy is given by substituting R3

4G
(5)
N

= N2

2π in (5.18). The coefficient of leading divergence

7We can also apply the above result for d = 2 to the Wilson loop computation. This leads to the following

correlation function of two concentric Wilson loop operators in the strongly coupled large N N = 4 super

Yang-Mills theory 〈W (r)W (r′)〉connected = e−
√

2g2
YMN ·b̃(ρ).
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Figure 6: The function b̃(ρ) computed from the minimal surfaces in AdS4 (d = 2). The horizontal

and vertical coordinate are ρ and b̃, respectively. The dotted points are obtained from the direct

numerical solutions to (5.15), while the solid curves are from the analytical method discussed in

(5.19). Both of them agree with each other very well. There are two solutions and the lower one is

physically relevant as it has a smaller area.

and logarithmic divergence in (5.18) can be fixed by noting that when z is small, the

solution to (5.15) is well approximated by the simple sphere solutions.8

We again solved (5.15) numerically and computed the finite term b̃3. This is plotted

in figure 7. The properties of the solutions to (5.15) at d = 3 are similar to the previous

one at d = 2. Again two different solutions exist when r2/r1 < (r2/r1)∗ = 1.844. Above

this value there is no connected solution. The value of b̃3 for one of the two solutions is

always greater than that of two disconnected spheres b̃3sphere = −1/2 − log 2 ' −1.193

and it approaches this value b̃3sphere in the ρ → 0 limit. Thus this solution is physically

irrelevant.

In summary, the physically relevant minimal surface is found as follows. When b̃3 <

b̃3sphere, it is given by one of the two non-trivial connected solutions to (5.15) with the

smaller area. At b̃3 = b̃3sphere, a transition takes place. Then it becomes the disconnected

sphere solution when b̃3 > b̃3sphere. Thus again we can confirm that this function b̃3(ρ) is

concave, agreeing with the strong subadditivity.

Finally we would like to briefly mention a semi-analytical approach to this problem.

Let us artificially add an extra coordinate xd+1 in (5.1) (i.e. AdSd+3) and consider the d

dimensional minimal surface whose boundary is given by two concentric rings (or spheres).

We first assume that they are separated from each other by ∆xd+1 in the new xd+1 direction.

When d = 2, this example has been studied in [30, 31] in order to compute the Wilson

8This fact can be checked by looking at the asymptotic behavior at z = 0 of the function r = r(z), which

satisfies the differential equation zrr′′ − (d − 1)(r′)2z − (d − 1)z − drr′ − dr(r′)3 = 0 equivalent to (5.15).

– 18 –



J
H
E
P
0
2
(
2
0
0
7
)
0
4
2

Figure 7: The function b̃3(ρ) computed from the minimal surfaces in AdS5 (d = 3). The horizontal

and vertical coordinate are ρ and b̃, respectively. The dotted points are obtained from the direct

numerical solutions to (5.15) , while the solid curves are from the analytical method discussed in

(5.21). Both of them agree with each other very well. There are two solutions and the lower one is

physically relevant as it has a smaller area.

loops. In this setup, we can find first integrals and reduce the problem to the analysis of

first order differential equations9 [30, 31] if we treat all quantities as functions of xd+1.

Further, we take the zero separation limit ∆xd+1 → 0. Then we go back to the original

setup discussed in the above to compute the entanglement entropy (i.e. (5.15)). However,

we have to be careful since the radii of the rings become zero in this limit. If we neglect

this point, we can find the integral expression of the area |γA|. These have already been

expressed in figure 6 and figure 7 as a solid curve. Indeed, we can see that they nicely

agree with the results obtained by solving (5.15) numerically. Thus we can find that this

method offers us the exact computations of b̃ and b̃3.

Their explicit forms are summarized as follows. In the d = 2 case, we first define the

parameter s in terms of ρ(≡ log(r2/r1)) as follows

ρ = s

∫ sin2 θ0

0
dy

y1/2

√

(1 − y)(1 − y − s2y2)
, (5.19)

where θ0 is the solution to s2 sin4 θ0 = cos2 θ0. Then the area becomes

|γA|d=2

2πR2
=

∫ θ0

a/r1

dθ
cos θ2

sin θ2
√

cos2 θ − s2 sin4 θ
+

∫ θ0

a/r2

dθ
cos θ2

sin θ2
√

cos2 θ − s2 sin4 θ
. (5.20)

9After we submitted this paper, we noticed that in the recent paper [32] , the explicit solution at

∆xd+1 = 0 was obtained in the context of Wilson loop. We are grateful to N. Drukker for letting us know

the paper.
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In the d = 3 case, we define

ρ = s

∫ sin2 θ0

0
dy

y
√

(1 − y) ((1 − y)2 − s2y3)
, (5.21)

where θ0 is the solution to s2 sin6 θ0 = cos θ4
0. Finally the area becomes

|γA|d=3

4πR3
=

∫ θ0

a/r1

dθ
cos θ4

sin θ3
√

cos4 θ − s2 sin6 θ
+

∫ θ0

a/r2

dθ
cos θ4

sin θ3
√

cos4 θ − s2 sin6 θ
. (5.22)

The functions b̃(ρ) and b̃3(ρ) can be obtained from (5.20) and (5.22) by subtracting the

divergences.

6. Conclusions and discussions

In this paper, we explored further evidences for the recent proposal of holographic com-

putations of entanglement entropy. Especially we looked at an important property of the

entanglement entropy, known as the strong subadditivity.

First we showed that this requires various terms in the entanglement entropy should

be concave functions with respect to the geometric parameters such as the cusp angle or

the ratio of radii of an annulus. Secondly we computed the entanglement entropy from the

dual gravity side in several explicit examples and found that the strong subadditivity is

satisfied in all of our examples. This offers us a highly non-trivial check of our proposal.

It will be obviously an important future problem to derive the required concavity of the

minimal surface area in AdS spaces from a more systematic method, which probably needs

the use of a positive energy condition and of the Einstein equation on AdS spaces.

Our results in (2 + 1)D CFT can directly be applied to the Wilson loop computations

in 4D gauge theories via the AdS/CFT correspondence. Thus we are led to the conjecture

that the strong subadditivity relation (2.9) is also true for the (locally supersymmetric)

Wilson loops 〈W (C)〉 by replacing SA with − log〈W (∂A)〉 at least in strongly coupled

gauge theories. Indeed, the concavity of the quark-antiquark potential has been already

shown in [33], which corresponds to the particular case of rectangular Wilson loops. This

property has been successfully tested in the AdS/CFT correspondence in [34, 35] for some

specific examples. This issue clearly deserves further investigations.

In addition, we discussed the relation between the holographic entanglement entropy

and the covariant entropy bound known as the Bousso bound. We noted that the holo-

graphic entanglement entropy formula (4.1) implies that the entropy bound is saturated.

This leads to another natural explanation of the proposal. At the same time, this makes

clear the region in AdS space where are encoded the information included in a specified

submanifold of the boundary CFT.
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